

Emrbyology, anatomy, physiology

Dr. R. Cohen-Hallaleh

EmbryologyAnatomyPhysiology

A glandular organ in the digestive system and endocrine system

EMBRYOLOGY

- Develops from 2 buds arising from endoderm of the caudal part of the foregut
- Ventral pancreatic bud develops from proximal end of hepatic diverticulum (forms liver & gall bladder)
- Dorsal pancreatic bud develops from dorsal wall of duodenum
- Most of pancreas derived from dorsal pancreatic bud

EMBRYOLOGY

- Duodenum rotates to the right becoming Cshaped
- Ventral bud moves dorsally to lie below and behind dorsal bud
- 2 buds fuse together in the dorsal mesentery

<u>EMBRYOLOGY</u>

Ventral bud forms:
Uncinate process
Inferior part of head

Dorsal bud forms:
Upper part of head
Neck
Body
Tail of pancreas

EMBRYOLOGY

Main pancreatic duct formed from:

Duct of ventral bud
Distal part of dorsal bud duct

 Accessory pancreatic duct formed from:
 Proximal part of dorsal bud duct

CONGENITAL ANOMALIES

- Accessory pancreatic tissue: Located in wall of stomach or duodenum
- Annular pancreas: thin flat band of pancreatic tissue surrounding 2nd part of duodenum. Can cause duodenal obstruction

CONGENITAL ANOMALIES

Pancreas divisum: Pancreatic buds fail to fuse

<u>ANATOMY</u>

 Retro-peritoneal gland at 2nd lumbar level extending in oblique, transverse position
 Divided into:

- Head
- Neck
- Body
- Tail

Both exocrine and endocrine functions

<u> ANATOMY – Pancreas Head</u>

- Surface marking:
- Relations:
 - Posterior:
 - Uncinate:
- IVC, Aorta, Lt & Rt renal vns, CBD Posterior = Aorta Anterior = SMV/SMA

L2

ANATOMY – Pancreas Neck

L1

- Surface marking:
- Relations:
 - Posterior: SMV/SMA (emerge inferiorly),
 - Portal vein (confluence SMV, Splenic vn)
 - Superior: D1
 - Right: Gastroduodenal artery

ANATOMY – Pancreas Body

- Surface marking: L1
- Relations:

- Anterior: Lesser sac, Stomach
- Posterior: Lt renal vn, Lt crus, aorta, Lt psoas,
 - Lt adrenal, Lt renal hilum, Splenic vn
- Superior: Splenic artery
 - Inferior: Transverse mesocolon

<u> ANATOMY – Pancreas Tail</u>

- Surface marking: T12
- Within lienorenal ligament
- Up to splenic hilum
- Relations:
 - Posterior: Kidney
 - Inferior: Colon

ANATOMY – Pancreas Ducts

 Main duct (of Wirsung): Joins CBD at Ampulla of Vater

 Normal diameter of main duct (of Wirsung): Head: 4 mm
 Neck: 3 mm
 Tail: 2 mm
 > 70yrs: 5-6 mm

ANATOMY – Pancreas Ducts

- Ampulla:
 - Major: Duct of Wirsung Surface marking: L2 Opens in D2, 7.5-10cm distal from pylorus
 Minor: 2cm proximal to major papilla

ANATOMY – Pancreas Ducts

Main duct/CBD at Ampulla
 Common with CBD: 90%
 Y 70%
 V 20%
 Separate duodenal entry: 10%
 U 10%

ANATOMY – Arterial Supply

- Splenic artery:
 - 3 biggest branches are:

Dorsal pancreatic artery Pancreatica Magna (midportion of body) Caudal pancreatic artery (tail)

- Superior pancreaticoduodenal:
 - Coeliac > Common hepatic > Gastroduodenal
 - Divides into anterior and posterior branches
- Inferior pancreaticoduodenal:
 - Direct branch off SMA
 - Divides into anterior and posterior branches
 - Anastomosis with superior pancreaticoduodenal

ANATOMY – Arterial Supply

<u>ANATOMY – Venous drainage</u>

Head:

Superior pancreaticoduodenal vn:
 Rt gastroepiploic vn & middle colic → SMV
 Inferior pancreaticoduodenal vn:

SMV

Neck, Body, Tail:

Small tributaries to splenic vein

<u>ANATOMY – Venous drainage</u>

<u>ANATOMY – Lymph drainage</u>

- Head:
 - Upper
 - Lower & uncinated

 $\begin{array}{ll} \rightarrow & \text{Coeliac} \\ \rightarrow & \text{SM group} \end{array}$

- Neck, Body, Tail:
 - Retropancreatic & Splenic

<u>ANATOMY – Nerve supply</u>

- Parasympathetic:
 - Posterior vagus & Coeliac ganglia
 - Stimulate both endocrine and exocrine secretion

- Sympathetic:
 - Splanchnics T6-10 & Coeliac plexus
 - Predominantly inhibitory effect

<u> ANATOMY - Structure</u>

- Lobules separated by septa:
 - Acini: Exocrine
 - Islets of Langerhans: Endocrine
- Ducts: Intercalated ducts at acini
 - > Intralobular ducts
 - > Interlobular ducts
 - > Main duct

HISTOLOGY

PHYSIOLOGY

Production of pancreatic hormones by 3 cell types:

- 1) Alpha cells \rightarrow glucagon
- 2) Beta cells
- \rightarrow insulin
- 3) Delta cells
- \rightarrow somatostatin

PHYSIOLOGY & HISTOLOGY

 Three cell types are present, A (glucagon secretion), B (Insulin secretion) and D (Somatostatin secretion)

A and D cells are located around the perimeter while B cells are located in the interior

PHYSIOLOGY - Metabolism

Pancreatic Hormones, Insulin & Glucagon, Regulate Metabolism

PHYSIOLOGY – Role of Insulin

- Acts on tissues (especially liver, skeletal muscle, adipose) to increase uptake of glucose and amino acids.
 - Without insulin, most tissues do not take in glucose and amino acids well (except brain).
- Increases glycogen production (glucose storage) in the liver and muscle.
- Stimulates lipid synthesis from free fatty acids and triglycerides in adipose tissue.
- Also stimulates potassium uptake by cells (role in potassium homeostasis).

PHYSIOLOGY – Insulin regulation

- Major stimulus is increased blood glucose levels
 - After meal, blood glucose increases
 - Insulin released
 - Insulin causes uptake of glucose into tissues
 - Blood glucose levels decrease.
- Insulin levels decline as blood glucose declines

 Glucagon <u>stimulates</u> insulin secretion (glucagon has opposite actions).

PHYSIOLOGY – Role of Glucagon

- Acts on liver to cause breakdown of glycogen (glycogenolysis), releasing glucose into the bloodstream.
- Inhibits glycolysis
- Increases production of glucose from amino acids (gluconeogenesis).
- Increases lipolysis, to free fatty acids for metabolism.

Result: maintenance of blood glucose levels during fasting.

PHYSIOLOGY – Glucagon regulation

- Increased blood glucose inhibits glucagon release
- Insulin inhibits glucagon secretion
- Amino acids <u>stimulate</u> (high protein, low carbohydrate meal)
- Stress: Epinephrine acts on beta-adrenergic receptors on alpha cells, <u>increasing</u> gluagon release (increases availability of glucose for energy)

Glucose Homeostasis

PHYSIOLOGY - Somatostatin

Secreted by Delta cells

Suppresses release of GIT hormones:
 Gastrin, Cholecystokinin, Secretin, Motilin, VIP, GIP

 Decreases rate of gastric emptying
 Decreases smooth muscle contractions and blood flow within intestine

PHYSIOLOGY - Somatostatin

Supresses release of pancreatic hormones:
 Inhibits insulin & glucagon

 Suppresses exocrine secretory action of pancreas.

PHYSIOLOGY – Exocrine function

Control via hormones secreted by stomach & duodenum in response to distension:
Gastrin, CCK, Secretin

2 Main classes of exocrine pancreatic secretions:

Secretin \rightarrow Bicarbonate ions CCK \rightarrow Digestive enzymes

PHYSIOLOGY – Exocrine function

Bicarbonate ions neutralize acidic chyme

Pancreas main source of enzymes for fat/lipid and protein digestion. Major proteases:

Trypsinogen, Chymotrypsinogen

- Lipase, amylase
- Phospholipase, Cholesterol esterase

Precursors activated by enteropeptidases

QUESTIONS?

